Two New C₂₁ Steroids from Marsdenia tenacissima

Jun DENG, Zhi Xin LIAO, Dao Feng CHEN*

Department of Pharmacognosy, School of Pharmacy, Fudan University, Shanghai 200032

Abstract: Two new C₂₁ steroids were isolated from the CHCl₃ extract of the stem of *Marsdenia tenacissima*. On the basis of spectroscopic analysis and chemical methods, their structures were elucidated as 17 β -tenacigenin B (2) and 3-O-6-deoxy-3-O-methyl- β -D-allopyranosyl-(1 \rightarrow 4)- β -D-oleandropyranosyl-tenacigenin C (3). The structure of the known aglycon tenacigenin C was revised as 5 α , 9 α , 17 β -pregnane-3 β , 8 β , 11 α , 12 β , 14 β -pentanol-20-one. Compound 3 is the first reported glycoside of tenacigenin C.

Keywords: Marsdenia tenacissima, C21 steroids, tenacigenin B, 17β-tenacigenin B, tenacigenin C.

Marsdenia tenacissima, a perennial climber of family Asclepiadaceae, has long been used for the treatment of cancer and asthma in China¹. Twelve polyoxypregnane genins and nine glycosides have been isolated from the stem of the title plant ²⁻⁶. Two new steroids (**2** and **3**) along with the known tenacigenin B (**1**) were isolated from the CHCl₃ extract of the stem of *M. tenacissima*. This paper deals with the structural elucidation of the two new compounds.

Compound 1 was identified as tenacigenin B by comparing its ¹H and ¹³C NMR data (**Table 1**) with those reported in the literature^{2,4}. The 17α side chain of 1 was confirmed by the NOESY experiment (**Figure 2**).

Compound **2**, obtained as colorless needles, gave a quasi-molecular ion at m/z 387.2144 ([M+Na]⁺, calcd. 387.2147) in its HR-ESI-MS spectrum, indicating its molecular formula was C₂₁H₃₂O₅. The ¹H and ¹³C NMR spectral data (**Table 1**) quite resembled to those of **1**. The difference between the ¹H NMR spectra of **2** and **1** was that the resonance for the 17-H was at $\delta_{\rm H} 2.59$ (*dd*, 1H, *J*= 11.4, 6.7 Hz) in **2** while that

Figure 1 The structures of compounds 1-3

^{*} E-mail: dfchen@shmu.edu.cn

Jun DENG et al.

was at $\delta_{\rm H}$ 3.02 (*t*, 1H, *J*= 6.1 Hz) in **1**. The split pattern and coupling constants of the signal of 17-H suggested that the C-17 side chain of **2** was in β orientation, while that of **1** was in α orientation ⁷. This was supported by the cross peaks between $\delta_{\rm H}$ 0.93 (18-CH₃)/ $\delta_{\rm H}$ 2.25 (21-CH₃) and between $\delta_{\rm H}$ 2.59 (17-H)/ $\delta_{\rm H}$ 3.26 (12-H) in the NOESY spectrum of **2**, and those between $\delta_{\rm H}$ 1.16 (18-CH₃)/ $\delta_{\rm H}$ 3.02 (H-17) and between $\delta_{\rm H}$ 2.28 (21-CH₃)/ $\delta_{\rm H}$ 3.30 (12-H) in the NOESY spectrum of **1** (**Figure 2**). Therefore, **2** was determined as 17β-tenacigenin B.

Comparing the ¹H and ¹³C NMR data of **1** and **2** (recorded in CDCl₃), the signal of 18-CH₃ was at $\delta_{\rm H}$ 1.16 in **1** and at $\delta_{\rm H}$ 0.93 in **2**, the signals of C-12 and C-18 were at $\delta_{\rm C}$ 74.3 and $\delta_{\rm C}$ 17.6 in **1**, and at $\delta_{\rm C}$ 80.1 and $\delta_{\rm C}$ 10.4 in **2** due to the change of the C-17 configuration. The proton signal of 21-CH₃ of **1** was almost same as that of **2**. In literature, the C-17 configuration of C₂₁ steroids was determined by comparing the ¹H NMR data of 21-CH₃ measured in C₅D₅N⁴. It was reported that the chemical shift of 21-CH₃ of marsdenin was $\delta_{\rm H}$ 2.39 and that of 17β-marsdenin was $\delta_{\rm H}$ 2.23⁸. To understand the relationship between the chemical shift of 21-CH₃ with the C-17 configuration, the ¹H NMR spectra of **1** and **2** were also measured in C₅D₅N. It was found that the signal of 21-CH₃ in **1** was at $\delta_{\rm H}$ 2.37 and that of **2** was at $\delta_{\rm H}$ 2.52, just opposite to that observed with marsdenin and 17β-marsdenin. The above result indicated that the C-17 configuration of polyoxypregnanes can not be determined with the chemical shift of 21-CH₃ protons.

Compound **3**, was obtained as white amorphous powder. Liebermann-Burchard, Keller-Kiliani, and xanthydrol tests gave positive reactions, indicating that it was a steroidal glycoside with 2-deoxy sugar ⁹. It had a molecular formula $C_{35}H_{58}O_{13}$ based on the quasi-molecular ion at m/z 725.3513 ($[M+K]^+$, calcd. 725.3515) in the HR-ESI-MS spectrum. The ¹H NMR spectrum displayed two anomeric proton signals at $\delta_H 4.80$ (d, 1H, J=8.5 Hz) and $\delta_H 4.59$ (dd, 1H, J=9.7, 1.8 Hz), corresponding carbon resonances at $\delta_C 99.2$ and $\delta_C 97.0$ in the ¹³C NMR spectrum, respectively, suggesting that **3** was a disaccharide glycoside. The ¹H and ¹³C NMR data of the sugar moiety of **3** (**Table 1**) coincided well with those of pachybiose ³. Mild acidic hydrolysis of **3** afforded only one sugar fragment which was identified as pachybiose by TLC comparison with an authentic sample. The coupling constants, 8.5 Hz and 9.7 Hz, of the two anomeric proton resonances indicated that the sugar linkages were both in β orientation. The ¹H NMR data of the aglycon moiety of **3** were identical to those of the

known tenacigenin C⁴. The mild acidic hydrolysis of **3** gave a genin **3a**. Its mp, IR, and ¹H NMR data were same as those of tenacigenin C. In Yang's work, the C-17 side chain of tenacigenin C was determined as in an α -configuration according to the chemical shift value of 21-CH₃ ($\delta_{\rm H}$ 2.45) which was closer to that of marsdenin⁴. But as mentioned above, the C-17 configuration of C₂₁ steroids can not be determined with the chemical shift of 21-CH₃ protons. The NOESY correlations between $\delta_{\rm H}$ 0.93 $(18-CH_3) / \delta_H 2.26 (21-CH_3)$ and between $\delta_H 2.58 (17-H) / \delta_H 3.25 (12-H)$ (Figure 3) clearly indicated that the 17-H was in α orientation and that the C-17 side chain was in β orientation in 3. Therefore, the structure of tenacigenin C was revised as 5α , 9α , 17β-pregnane-3β, 8β, 11α, 12β, 14β-pentanol-20-one. The glycosidation shifts of C-2 (- 2.1 ppm), C-3 (+ 6.1 ppm), and C-4 (- 2.9 ppm) were observed by comparing the 13 C NMR data of 3 with those of 3a, indicating that the oligosaccharide chain was linked at the C-3 hydroxyl group of the aglycon, which was confirmed by the cross peaks between $\delta_{\rm H}$ 4.59 (1-H_{olea})/ $\delta_{\rm C}$ 76.8 (C-3) and between $\delta_{\rm H}$ 3.67 (3-H)/ $\delta_{\rm C}$ 97.0 (Olea-C-1) in the HMBC spectrum of 3 (Figure 3). Consequently, the structure of 3 was elucidated as 3-O-6-deoxy-3-O-methyl- β -D-allopyranosyl-(1 \rightarrow 4)- β -D-oleandropyranosyltenacigenin C.

Compound 1: mp 225.5-228.0 °C; $[\alpha]_{D}^{22}$ -6.2 (*c* 0.6, MeOH); IR (KBr) *v* (cm⁻¹): 3493, 2925, 1699, 1455, 1367, 1178, 1154, 1100, 1037, 940; ESI-MS *m/z* 387.1 [C₂₁H₃₂O₅+Na]⁺; ¹H NMR (500 MHz, CDCl₃): δ ppm 1.06 (*s*, 3H, 19-CH₃), 1.16 (*s*, 3H, 18-CH₃), 1.47 (*d*, 1H, *J*= 9.4 Hz, 9-H), 2.28 (*s*, 3H, 21-CH₃), 3.02 (*t*, 1H, *J*= 6.1 Hz, 17-H), 3.30 (*d*, 1H, *J*= 9.4 Hz, 12 α -H), 3.58 (*t*, 1H, *J*= 9.4 Hz, 11 β -H), 3.67 (*m*, 1H, 3-H); ¹H NMR (400 MHz, C₅D₅N): δ ppm 1.31 (*s*, 3H, 19-CH₃), 1.48 (*s*, 3H, 18-CH₃), 1.74 (*d*, 1H, *J*= 9.4 Hz, 9-H), 2.37 (*s*, 3H, 21-CH₃), 3.11 (*t*, 1H, *J*= 6.0 Hz, 17-H), 3.75 (*d*, 1H, *J*=9.4 Hz, 12-H), 3.92 (*m*, 1H, 3-H); 3.97 (*t*, 1H, *J*= 9.4 Hz, 11-H); ¹³C NMR: **Table 1**.

Table 1 The ¹³C NMR data of **1-3** and **3a** (125 MHz; in CDCl₃) (δ ppm)

	1	2	3a		3	
C-1	38.1 (t)	38.1 (t)	37.9 (t)	38.1 (t)	Sugar moiety of 3	
C-2	32.3 (t)	31.3 (t)	31.1 (t)	29.0 (t)	Oleandrose	
C-3	70.8 (d)	71.0 (d)	70.7 (d)	76.8 (d)	C-1	97.0 (d)
C-4	38.5 (t)	38.2 (t)	37.5 (t)	34.6 (t)	C-2	36.1 (t)
C-5	44.6 (d)	44.8 (d)	44.5 (d)	44.6 (d)	C-3	78.9 (d)
C-6	26.9 (t)	27.1 (t)	28.0 (t)	27.1 (t)	C-4	79.2 (d)
C-7	31.2 (t)	31.6(t)	32.4 (t)	32.6 (t)	C-5	71.3 (d)
C-8	66.0 (s)	66.1 (s)	65.9 (s)	66.0 (s)	C-6	18.6 (q)
C-9	54.4 (d)	54.3 (d)	53.2 (d)	53.4 (d)	3-OMe	55.6 (q)
C-10	39.1 (s)	39.1 (s)	39.0 (s)	39.2 (s)	Allose	
C-11	68.6 (d)	67.9 (d)	68.1 (d)	67.8 (d)	C-1	99.2 (d)
C-12	74.3 (d)	80.1 (d)	80.3 (d)	80.0 (d)	C-2	71.9 (d)
C-13	47.3 (s)	46.3 (s)	46.4 (s)	46.1 (s)	C-3	81.0 (d)
C-14	71.5 (s)	71.2 (s)	70.4 (s)	70.3 (s)	C-4	72.9 (d)
C-15	27.7 (t)	27.0 (t)	27.8 (t)	27.9 (t)	C-5	71.4 (d)
C-16	25.5 (t)	25.6 (t)	25.4 (t)	25.4 (t)	C-6	17.9 (q)
C-17	60.4 (d)	64.1(d)	63.8 (d)	64.0 (d)	3-OMe	61.9 (q)
C-18	17.6 (q)	10.4 (q)	10.4 (q)	10.3 (q)		
C-19	13.0 (q)	12.9 (q)	12.8 (q)	12.8 (q)		
C-20	212.4 (s)	213.4 (s)	213.0 (s)	213.2 (s)		
C-21	32.6 (q)	30.3 (q)	30.4 (q)	30.3 (q)		

Jun DENG et al.

Compound **2**: mp 229-231.5 °C; $[\alpha]_{D}^{22}$ -85.7 (*c* 0.18, MeOH); IR (KBr) *v* (cm⁻¹): 3491, 2921, 1676, 1450, 1368, 1164, 1122, 1094, 1051, 934; HR-ESI-MS *m/z* 387.2144 (calcd. 387.2147 for $[C_{21}H_{32}O_5+Na]^+$); ¹H NMR (500 MHz, CDCl₃, δ ppm): 0.93 (*s*, 3H, 18-CH₃), 1.04 (*s*, 3H, 19-CH₃), 1.35 (*d*, 1H, *J*=9.4 Hz, 9-H), 2.25 (*s*, 3H, 21-CH₃), 2.59 (*dd*, 1H, *J*=11.4, 6.7 Hz, 17 α -H), 3.26 (*d*, 1H, *J*=9.4 Hz, 12 α -H), 3.62 (*t*, 1H, *J*=9.4 Hz, 11 β -H), 3.64 (*m*, 1H, 3-H); ¹H NMR (400 MHz, C₅D₅N, δ ppm): 1.32 (*s*, 6H, 18, 19-CH₃), 1.82 (*d*, 1H, *J*= 9.4 Hz, 9-H), 2.52 (*s*, 3H, 21-CH₃), 2.94 (*dd*, 1H, *J*=12.1, 6.1 Hz, 17-H), 3.68 (*d*, 1H, *J*= 9.4 Hz, 12-H), 3.94 (*m*, 1H, 3-H), 3.97 (*t*, 1H, *J*= 9.4 Hz, 11-H); ¹³C NMR: **Table 1**.

Compound **3**: $[\alpha]_{D}^{22}$ -4.8 (*c* 2.0, MeOH); IR (KBr) *v* (cm⁻¹): 3532, 3451, 2933, 1694, 1446, 1368, 1300, 1277, 1251, 1164, 1129, 1067, 1023, 983; HR-ESI-MS *m/z* 725.3513 (calcd. 725.3515 for $[C_{35}H_{58}O_{13}+K]^+$); ¹H NMR (500 MHz, CDCl₃, δ ppm): 0.93 (*s*, 3H, 18-CH₃), 1.04 (*s*, 3H, 19-CH₃), 1.26 (*d*, 3H, *J*= 6.1 Hz, Allo-6-CH₃), 1.37 (*d*, 3H, *J*= 5.7 Hz, Ole-6-CH₃), 1.47 (*d*, 1H, *J*=9.3 Hz, 9-H), 1.49 (*m*, 1H, Ole-2-H_a), 2.26 (*s*, 3H, 21-CH₃), 2.31 (*dd*, 1H, *J*= 10.2, 3.3 Hz, Ole-2-H_e), 2.58 (*dd*, 1H, *J*=11.8, 7.4 Hz, 17-H), 3.18 (*dt*, 1H, *J*= 6.8, 2.2 Hz, Allo-4-H), 3.25 (*d*, 1H, *J*=9.3 Hz, 12-H), 3.34 (*m*, 1H, Ole-5-H), 3.36 (*t*, 1H, *J*= 6.1 Hz, Allo-2-H), 3.56 (*m*, 1H, Allo-5-H), 3.58 (*t*, 1H, *J*=9.3 Hz, 11-H), 3.66 (*s*, 3H, Allo-3-OCH₃), 3.67 (*m*, 1H, 3-H), 3.80 (*t*, 1H, *J*= 2.7 Hz, Allo-3-H), 4.59 (*dd*, 1H, *J*= 9.7, 1.8 Hz, Ole-1-H), 4.80 (*d*, 1H, *J*= 8.5 Hz, Allo-1-H); ¹³C NMR data: **Table 1**.

Compound **3a**: mp 121.5-123.0°C; $[\alpha]_{D}^{22}$ -42.4 (*c* 0.3, MeOH); IR (KBr) *v* (cm⁻¹): 3523, 3443, 1696, 1449, 1109, 1047, 1032, 934, 865, 830, 769; HR-ESI-MS *m/z* 405.2248 (calcd. 405.2253 for $[C_{21}H_{34}O_6+Na]^+$); ¹H NMR (500 MHz, CDCl₃, δ ppm): 0.93 (*s*, 3H, 18-CH₃), 1.05 (*s*, 3H, 19-CH₃), 1.45 (*d*, 1H, *J*= 9.5 Hz, 9-H), 2.27 (*s*, 3H, 21-CH₃), 2.55 (*dd*, 1H, *J*= 12.1, 6.4 Hz, 17-H), 3.25 (*d*, 1H, *J*= 9.5 Hz, 12 α -H), 3.60 (*t*, 1H, *J*= 9.5 Hz, 11 β -H), 3.66 (*m*, 1H, 3-H); ¹H NMR (400 MHz, C₅D₅N, δ ppm): 1.28 (*s*, 6H, 18, 19-CH₃), 1.79 (*d*, 1H, *J*= 9.4 Hz, 9-H), 2.46 (*s*, 3H, 21-CH₃), 2.93 (*dd*, 1H, *J*= 11.7, 6.2 Hz, 17-H), 3.65 (*d*, 1H, *J*= 9.4 Hz, 12-H), 3.90 (*m*, 1H, 3-H), 3.93 (*t*, 1H, *J*= 9.4 Hz, 11-H); ¹³C NMR: **Table 1**.

References

- 1. Jiangsu New College of Medicine, *A Dictionary of Traditional Chinese Drugs*, Shanghai Science and Technology Press, Shanghai, **1977**, 1976.
- 2. S. Miyakawa, K. Yamaura, K. Hayashi, et al., Phytochemistry, 1986, 25 (12), 2861.
- 3. J. J. Chen, Z. X. Zhang, J. Zhou, Acta Bot. Yunn., 1999, 21 (3), 369.
- 4. R. Z. Yang, C. R. Yang, J. Zhou, Acta Bot. Yunn., 1981, 3 (3), 271.
- 5. S. Q. Luo, L. Z. Lin, G. A. Cordell, et al., Phytochemistry, 1993, 34 (6), 1615.
- 6. S. X. Qiu, S. Q. Luo, L. Z. Lin, et al., Phytochemistry, 1996, 41 (5), 1385.
- 7. S. Q. Luo, L. Z. Lin, G. A. Cordell, et al., Magn. Reson. Chem., 1993, 31 (3), 215.
- 8. A. Saner, S. Stocker, T. Reichstein, Helv. Chim. Acta, 1972, 55 (4), 1221.
- 9. N. P. Sahu, N. Panda, N. B. Mandal, et al., Phytochemisty, 2002, 61 (4), 383.

Received 7 April, 2004